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Abstract

Spatial synchrony, defined as correlated temporal fluctuations among populations, is a fundamen-
tal feature of population dynamics, but many aspects of synchrony remain poorly understood.
Few studies have examined detailed geographical patterns of synchrony; instead most focus on
how synchrony declines with increasing linear distance between locations, making the simplifying
assumption that distance decay is isotropic. By synthesising and extending prior work, we show
how geography of synchrony, a term which we use to refer to detailed spatial variation in patterns
of synchrony, can be leveraged to understand ecological processes including identification of dri-
vers of synchrony, a long-standing challenge. We focus on three main objectives: (1) showing con-
ceptually and theoretically four mechanisms that can generate geographies of synchrony; (2)
documenting complex and pronounced geographies of synchrony in two important study systems;
and (3) demonstrating a variety of methods capable of revealing the geography of synchrony and,
through it, underlying organism ecology. For example, we introduce a new type of network, the
synchrony network, the structure of which provides ecological insight. By documenting the impor-
tance of geographies of synchrony, advancing conceptual frameworks, and demonstrating power-
ful methods, we aim to help elevate the geography of synchrony into a mainstream area of study
and application.
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INTRODUCTION

Spatial synchrony, defined as correlated fluctuations among
spatially disjunct populations, is a fundamental aspect of
population dynamics (Liebhold et al. 2004) that has long
intrigued ecologists (Elton & Nicholson 1942; Moran 1953),
resulting in an extensive literature documenting synchrony in
diverse taxa such as plankton (Vasseur & Gaedke 2007;
Defriez et al. 2016), insects (Hanski & Woiwod 1993), birds
(Koenig & Liebhold 2016) and many others (Liebhold et al.
2004). Synchrony is ubiquitous, and occurs at distances up
to thousands of kilometres (Post & Forchhammer 2002;
Koenig & Liebhold 2016). Some practical implications of
synchrony are well known, e.g. metapopulations are at
greater risk of overall extinction if component populations
are synchronously rare (Heino et al. 1997; Earn et al. 2000),
while the synchrony of pest outbreaks exacerbates ecological
and socioeconomic impacts (Liebhold et al. 2012). Recent
work posits that spatial synchrony has implications for com-
munity dynamics and ecosystem function (Defriez et al.
2016).

Despite its importance in ecology, many aspects of syn-
chrony are still poorly understood. Difficulties have arisen in
determining which mechanism, or combination of mecha-
nisms, causes synchrony. Synchrony is thought, generally, to
arise from three mechanisms, alone or in combination: disper-
sal between populations; Moran effects, i.e. the synchronising
influence of correlated fluctuations in environmental drivers of
population dynamics (Moran 1953); and trophic interactions
with synchronised or mobile species (Liebhold et al. 2004).
However, using the most common past approaches, statistical
patterns of synchrony resulting from each of these mecha-
nisms can be similar (Ranta et al. 1999; Kendall et al. 2000;
Abbott 2007). It is the specific combination of causes that per-
tains in a situation, and their relative importance, that has sel-
dom been determined, except in special cases where certain
drivers are known to be absent (e.g. if landscape structure
prevents dispersal; Grenfell et al. 1998).
Recently, spectral approaches for studying synchrony have

grown in popularity (Viboud et al. 2006; Vasseur & Gaedke
2007; Keitt 2008; Sheppard et al. 2015). These approaches
allow the decomposition of synchrony according to the
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timescales at which it occurs, and can help identify causes of
synchrony (Sheppard et al. 2015); but they are still uncom-
monly applied, have limitations, and have also led to new
questions that highlight our ignorance about synchrony.
Recent studies using spectral and other methods have docu-
mented changes in synchrony over time, some of which were
abrupt, were possibly caused by climate change, and were eco-
logically or economically consequential (Post & Forchhammer
2004; Allstadt et al. 2015; Sheppard et al. 2015; Defriez et al.
2016; Koenig & Liebhold 2016; Shestakova et al. 2016). These
studies beg the question of whether synchrony commonly
changes in intensity or structure, and if so, why (Sheppard
et al. 2015)? It is possible that changes in synchrony are
another manifestation of climate change. This is an important
consideration but is as yet poorly documented (Post & Forch-
hammer 2004; Sheppard et al. 2015; Koenig & Liebhold 2016;
Shestakova et al. 2016).
Spatial dimensions of synchrony are still rarely explored in

detail in ecology. Historically, the most common approaches
for studying population synchrony emphasised the relation-
ship between synchrony and the distance between sampling
locations (Bjørnstad et al. 1999; Bjørnstad & Falck 2001).
While this is technically a spatially oriented approach, it
makes the simplifying choice to treat patterns of synchrony as
one-dimensional even though geographical space is at least
two-dimensional. Only if the landscape is homogenous and
the pattern of change in mechanisms of synchrony is isotropic
would this be an adequate assumption. Thus, the simplifica-
tion probably limits past statistical descriptions of synchrony
by obscuring information that may help reveal causes,
changes and important consequences of synchrony.
Relatively few studies have exploited detailed spatial aspects

of synchrony to more fully reveal ecological processes (e.g.
Bellamy et al. 2003; Haynes et al. 2009b, 2013; Gouveia et al.
2016). Gouveia et al. (2016) developed extensions of the non-
parametric covariance function (Bjørnstad & Falck 2001) and
the partial Mantel correlogram (Bjørnstad et al. 1995) that
calculate synchrony as a function of distance while accounting
for a second covariate. Haynes et al. (2013) depicted spatial
synchrony in gypsy moth outbreaks in detail as a matrix of
pairwise correlations between locations and used matrix
regression to investigate the importance of potentially syn-
chronising factors. Defriez & Reuman (in press a) mapped
spatial variation in vegetation synchrony and inferred causes
of synchrony from its spatial variation. These and other stud-
ies (Bjørnstad & Bascompte 2001; Powney et al. 2012; Mortel-
liti et al. 2015) indicate the importance of spatial patterns
beyond distance decay, but there are few such studies and we
argue that they should be the tip of the iceberg: opportunities
greatly eclipse what has been accomplished so far.
Here, we study the ‘geography of synchrony’ by synthesising

and extending past spatial work on synchrony. We demon-
strate that the geography of synchrony is worthy of study in
its own right as a major phenomenon that relates to many
areas of ecology. We argue that studies of the geography of
synchrony can produce advances on important applied and
pure-science questions. We describe ways that the geography
of synchrony can illuminate mechanisms of synchrony,
changes in synchrony, and the relationship between synchrony

and the ecology of an important model species. Benefits of a
spatial approach to synchrony in epidemiology have already
been great, revealing important aspects of the transmission
dynamics of major diseases such as measles (Grenfell et al.
2001; Jandarov et al. 2014), influenza (Viboud et al. 2006),
dengue (Cummings et al. 2004) and rotavirus (Pitzer et al.
2009). We argue that benefits to ecology can be at least as
great.
In the second section, we categorise theoretical mechanisms

that can generate geographies of synchrony; in the third sec-
tion, we apply these ideas showing that causes of synchrony
can be inferred from the geography of synchrony. In the
fourth section, we use satellite data to illustrate that the syn-
chrony of peak-growing-season normalised difference vegeta-
tion index (NDVI) values across the United States has a
pronounced geography; in the fifth section, we demonstrate
that geography of synchrony must be one of the key aspects
considered in future studies of possible shifts in synchrony
through time, and their consequences and causes. In the sixth
section, we introduce new network-based methods of studying
the geography of synchrony; in the seventh section, we
demonstrate how these tools can be applied to illuminate the
ecology of the gypsy moth, a classic model species for spa-
tiotemporal population dynamics studies. The eighth section is
the Discussion.

MECHANISMS OF GEOGRAPHY OF SYNCHRONY

Population synchrony may exhibit spatial structure for at least
four reasons. First, (A) there may be geographical patterns in
the synchronising driver itself, i.e. the driver may be more cor-
related between some pairs of locations than others. For
example, if populations are distributed on either side of a
mountain range, and an environmental driver is synchronised
on both sides of the range, but not across it, populations may
be synchronised similarly. Traditional approaches plotting the
dependence of synchrony on distance between sampling sites
will suggest that synchrony is weak overall, obscuring the
strongly synchronised groups on either side of the mountain
range. This is a simplified illustration: real habitat structure
may be complex, with cryptic geographical divisions between
subgroups. Second, (B) density-dependent population regula-
tion may differ among locations, so that the way environmen-
tal fluctuations drive dynamics varies spatially (Liebhold et al.
2006; Bjørnstad et al. 2010). Variation in density dependence
may result from heterogeneity in environmental quality or
from complex interactions including differences in effects of
natural enemies (Hanski et al. 1991). Sites with different den-
sity-dependent dynamics are expected typically to show
reduced synchrony, so spatial variation in density dependence
can produce geography of synchrony (Hugueny 2006). Third,
(C) limiting factors for population growth may vary spatially,
causing spatial shifts in which environmental factor drives
dynamics. This may be particularly important along latitudi-
nal or elevational gradients, as temperature (for instance) may
more strongly influence population fluctuations nearer to a
species’ climatic niche boundary. Finally, (D) dispersal among
populations may be unequal due to physical barriers and
landscape structure. Effects of landscape structure on
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connectivity and movement rates are well documented
(Tischendorf & Fahrig 2000). Populations more connected by
dispersal should be more synchronous. The four mechanisms
may operate alone or in combination, or populations may be
affected by multiple instances of one mechanism, e.g. there
may be two synchronising environmental variables, each with
its own spatial structure.
Mechanisms A–D are not mechanisms of synchrony, per se,

but rather are mechanisms by which synchrony can vary spa-
tially. A and D relate to mechanisms of synchrony in that
they reflect spatial structure in Moran effects and dispersal,
which are mechanisms of synchrony. On the other hand, B
produces geography of synchrony by altering synchrony
which arose by Moran effects or dispersal or another mecha-
nism, in a spatially variable way.
To demonstrate that mechanisms A–D can, indeed, produce

geography of synchrony, we simulated them using a vector
autoregressive moving average model, which is a linearisation
of a very general model (see Appendix S1 in Supporting
Information) that can encompass a variety of common mod-
elling frameworks. Our model considers populations at loca-
tions i = 1, . . ., P, which are linked by dispersal and
influenced by spatially correlated environmental fluctuations
(Moran effects). Deviation of the population in patch i from
the within-patch carrying capacity is denoted wi(t) for time t.
Environmental conditions for potential drivers are denoted
e jð Þ
i ðtÞ. Dispersal is implemented via a P9P matrix, D. The
model is:
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The autoregressive coefficients mil control density dependence
in habitat patch i, and the moving average coefficients q

ðjÞ
il

control the influence of the environmental variables. The
parameters a, b and c denote the numbers of autoregressive
lags, environmental drivers and moving average lags respec-

tively. Spatial structures in environmental fluctuations e jð Þ
i ðtÞ

are controlled by P 9 P covariance matrices Ωj. For present
purposes, environmental fluctuations are assumed to be inde-
pendent of each other and through time, and Gaussian with
mean 0 and variance 1 within each patch (i.e. diagonal entries
of the Ωj are 1). We considered b = 3 environmental drivers,
the first two representing regionally correlated fluctuations
(i.e. for j = 1, 2, Ωj had positive off-diagonal entries), and the
third representing local (spatially uncorrelated) environmental
noise. This model can implement any combination of mecha-
nisms A–D.
We here describe, in general terms (Appendix S2 has

details), example simulations corresponding to each mecha-
nism acting in isolation. We used each mechanism to generate
P = 16 population time series. Each mechanism was imple-
mented following a spatial structure consisting of two disjoint
eight-location sets, S1 and S2, among the 16 generated, so that
if the mechanism generates a geography of population syn-
chrony it should reflect that structure. To implement

mechanism A (spatial patterns in a synchronising driver), we
specified the covariance matrix Ω1 of the synchronising envi-
ronmental driver e 1ð Þ

i ðtÞ to vary in the off-diagonal as a block
matrix: entries controlling environmental covariance between
locations within S1 (respectively, within S2) were large (0.6),
and those controlling environmental covariance between loca-
tions in different sets were small (0.3). To implement mecha-
nism B (differences in density dependence), we altered the mil

such that all locations were governed by autoregressive order
2 (AR(2)) dynamics generating periodic oscillations under
stochastic excitation, but each set of locations had different
parameters, yielding periodicities of � 5 time steps for S1 and
� 16 time steps for S2. To implement mechanism C (spatial
changes in the operating environmental driver), we manipu-
lated the q

ð jÞ
il such that populations in S1 and S2 were sensitive

to different drivers, e 1ð Þ
i ðtÞ and e 2ð Þ

i ðtÞ respectively. To imple-
ment mechanism D (structured dispersal), we altered the dis-
persal matrix D so that 40% of individuals from each
location in S1 dispersed equally to other locations in S1, but
not to S2; and, respectively, for S2. Parameters unrelated to
the operating mechanism were spatially homogeneous
(Appendix S2).
Possible geographies of synchrony produced by our model

were represented as matrices of Pearson correlation coeffi-
cients between simulated population time series in location
pairs (16 9 16 matrices). Location membership in each set
differed for the different simulations, i.e. S1 and S2 were cho-
sen differently for each mechanism, so that geographical sig-
natures of the different mechanisms could be distinguished.
However, other than aiding in visual interpretation of results,
these distinctions are arbitrary, since location numbers are
arbitrary in our setup. For mechanism A, S1 was {1, . . ., 8};
for B, it was {1, . . ., 4, 9, . . ., 12}; for C, it was {1, . . ., 4, 13,
. . ., 16}; for D, it was {1, 2, 5, 6, 9, 10, 13, 14}.
Results indicated that each mechanism can indeed produce

a geography of synchrony. Structure corresponding to S1 and
S2 was present in each population correlation matrix (Fig. 1).
Correlation matrices are accompanied in Fig. 1 by representa-
tions of the spatial structure S1 and S2. In each case, there is
a visual match, suggesting that geography of synchrony may
be a powerful diagnostic tool in the inference of causes of syn-
chrony and variation therein in real data. This possibility is
further explored in the next section.

APPLICATION: INFERENCE OF THE CAUSES OF

SYNCHRONY

As Fig. 1 suggests, geography of synchrony can be an impor-
tant new tool for inferring mechanisms of synchrony. A few
prior studies have used this tool. For instance, Defriez and
Reuman mapped global spatial variation in synchrony of mar-
ine chlorophyll a (Defriez & Reuman in press b) and terres-
trial vegetation (Defriez & Reuman in press a), and used
spatial statistics to infer causes of synchrony from the spatial
patterns obtained. This map-based approach is discussed in
more detail in the fourth section.
Inferences have also been performed using matrix regression

(Legendre et al. 1994; Lichstein 2007). Matrix regressions
extend the widely used Mantel test (Mantel 1967) by assessing
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the relationship between a response matrix and multiple pre-
dictor matrices, each consisting of pairwise similarities (or dif-
ferences) between locations. The approach exploits the
geography of synchrony because it examines whether pairs of
locations which are more similar with respect to some geo-
graphical predictor(s) are also significantly more synchronous.
Haynes et al. (2013) argued using this approach that syn-
chrony in spring precipitation caused, in part, synchrony in
gypsy moth defoliation.
We argue below that matrix regressions are a potentially

useful but underexploited tool for inferring causes of syn-
chrony from geographical patterns. We also elaborate on
matrix regression, providing novel model selection tools.
Because synchrony is a type of similarity, and to simplify
interpretation of results, we consistently use similarity matri-
ces in statistical models, but using dissimilarity matrices (or
some of each) is also valid (Legendre & Legendre 1998).
We analysed our simulated data to test whether matrix

regression can uncover the mechanisms that underlie each
simulation. In addition to mechanisms A–D described above,
we created a fifth scenario that combined multiple mecha-
nisms for a stronger test of the matrix regression methods.
The combined scenario included two Moran driver variables,
e 1ð Þ
i ðtÞ and e 2ð Þ

i ðtÞ, having different spatial structures, with pop-
ulations equally sensitive to both, as well as spatially struc-
tured dispersal (Appendix S2 has details). Response matrices
in matrix regressions were the population correlation matrices
(e.g., Fig. 1a–d). Predictor matrices represented mechanisms
A–D. Representing mechanism A (spatial patterns in driver
synchrony) were correlation matrices for the stochastic realisa-
tions of e 1ð Þ

i ðtÞ and e 2ð Þ
i ðtÞ that occurred in the simulations.

For B (changes in density dependence), we measured pairwise
similarities in density dependence between locations. Similari-
ties were measured by first fitting AR(2) processes separately
to the simulated data from the two locations, and then analyt-
ically calculating the expected correlation between the fitted
processes if they were stimulated by identical white noise. This

is the reduction from the Moran expectation of perfect popu-
lation correlation that would occur if AR coefficients were the
same (Moran 1953; Appendix S3 for mathematical details).
Mechanism C (changing sensitivity to drivers) was quantified
by first measuring driver sensitivities using wavelet coherences
(Sheppard et al. 2012) between simulated population i and
realisations of the environmental drivers e 1ð Þ

i ðtÞ and e 2ð Þ
i tð Þ, for

all locations i. This gives, for each location, two vectors of
coherences indexed by timescale. Differences between sites in
these coherence vectors were computed based on the L2 norm
and were then transformed to between-site similarity values.
Mechanism D (differences in dispersal rate) was represented
using the dispersal matrix D from model setup.
In linear regression and other contexts, model selection

based on information criteria (such as the Akaike Information
Criterion, AIC) is frequently performed to identify which bio-
logical mechanism(s) are best supported by data (Burnham &
Anderson 2002; Clark & Gelfand 2006). Because matrix mod-
elling uses a resampling framework instead of likelihood, stan-
dard model selection is unavailable. We developed analogous
tools, based on leave-n-out cross validation and resampling,
that make it possible to perform model selection on matrix
models. The tools yield model rankings and, importantly,
model weights, which sum to 1 across the models considered
and which can be interpreted as the relative support for each
model. Briefly, we rank models by iteratively leaving out n
sites at random and using these n sites for out-of-sample pre-
dictions from each of our candidate models; the best model
has the lowest out-of-sample error rate. We then resample
locations many times and rank models for the resampled data
sets, using the fraction of times a candidate model is the top
model as its weight (see Appendices S4 for mathematical
details and S10 for R code). By summing model weights
across models containing a predictor, one can generate a pre-
dictor importance weight for each predictor. We generated
these weights for each simulated dataset. This approach has
the same advantages over standard hypothesis testing that

Figure 1 Illustrations of geography of synchrony caused by mechanisms A–D. Top panels depict spatial structures built into a model (eqn 1) using:

mechanism (A) spatial pattern in the synchrony of an environmental driver; mechanism (B) differences in density dependence; mechanism (C) differences in

sensitivity to drivers; mechanism (D) unequal dispersal rates. Bottom panels demonstrate that the population correlation matrix from each simulation

shows geography of synchrony reflecting mechanism spatial structure. See text for details.

© 2017 John Wiley & Sons Ltd/CNRS

4 J. A. Walter et al. Idea and Perspective



AIC-based model selection has over stepwise methods in mul-
tiple linear regression (Burnham & Anderson 2002). A likeli-
hood-based approach to matrix regression has been applied in
genetics (Yang 2004; Peterman et al. 2014), but that approach
does not apply to studies of synchrony because the statistical
model used does not preserve positive semidefiniteness, an
inherent property of population correlation matrices.
Matrix regression and model selection accurately discrimi-

nated drivers of synchrony and mechanisms underlying its
geography in simulated data, building confidence in the tech-
niques (Table 1). Across all four single-mechanism simula-
tions, the main operating mechanism was identified as a
significant determinant of the geography of synchrony, and
received large predictor importance weight. Model selection
results paralleled standard permutation-based hypothesis tests
for matrix regression, supporting our model selection
approach. As with mechanisms A–D in isolation, when we
combined mechanisms to create a stronger test, matrix regres-
sion identified the operating mechanisms (Table 1).
In two cases (mechanisms B and D in Table 1), a geography

of synchrony of environmental drivers arose only through
sampling variation, but nevertheless the driver synchrony
matrix was a significant predictor of the population synchrony
matrix, indicating that matrix regression can very sensitively
infer environmental drivers of synchrony. For these simula-
tions, the off-diagonals of Ω1 and Ω2 contained a non-zero
constant, but of course a correlation matrix of simulated envi-
ronmental time series would have some random variation in
its off-diagonal. In empirical cases, inference from subtle geo-
graphical patterns will be complicated by factors including
measurement error and collinear environmental variables.
Additionally, substantial population dynamic non-linearities
can affect synchrony and may hinder inferences made via lin-
ear approaches such as ours, for instance, because of emer-
gence of complex self-organised spatiotemporal patterns such
as travelling waves, non-linear phase-locking or spatial chaos

(Hassell et al. 1991; Sole et al. 1992; Bjørnstad 2000; Bjørn-
stad & Bascompte 2001).
In the above matrix modelling exercises, predictor and

response matrices were constructed from simulated data in all
cases except for the dispersal matrix, D, which was used
directly. This represents what could be done in an application
of matrix modelling to real data, in which case population
and environmental time series may be available but the nature
and parameterisation of dynamics would be unknown.
Although D would typically not be available, it can sometimes
be hypothesised from information on habitat structure and
knowledge of species biology (Bellamy et al. 2003; Powney
et al. 2012; T L Anderson et al. unpublished data).

MAPPING SPATIAL VARIATION IN SYNCHRONY

Geographies of synchrony can be mapped to characterise
spatial variation in the degree of regional or local spatial syn-
chrony. A recent approach measures synchrony in neighbour-
hoods defined by a moving window. For each location, some
metric of average synchrony among nearby locations is com-
puted; these values are then mapped (Defriez & Reuman in
press a,b). We apply this method to 1989–1998 time series of
annual peak terrestrial vegetation greenness (NDVI) derived
from Advanced Very High Resolution Radiometer (AVHRR)
satellite imagery for the contiguous USA (Fig. 2a). Data are
at 1 9 1 km2 resolution, and synchrony for each grid cell was
quantified as the mean Pearson correlation (over time)
between the cell and others within 10 km. Because of its
analogies in geostatistics (e.g. Anselin 1995), Gouveia et al.
(2016) coined this approach ‘non-centered local indicators of
spatial association’ (ncLISA). Data processing is explained in
Appendix S5.
Pronounced geography of synchrony is apparent in the

NDVI data (Fig. 2a). The wide variation in synchrony, span-
ning essentially the entire typical range of the statistic (0–1),

Table 1 Matrix regression recovers operating mechanisms A–D of geography of synchrony in simulated data, and in a complex scenario with combined

mechanisms. Bold font indicates statistically significant effects.

Simulated scenario

Driver 1

synchrony

Driver 2

synchrony Density dependence Driver sensitivity Dispersal

A) Driver 1 synchrony pattern b = 0.944 b = 0.037 b = �0.122 b = 0.009 b = �0.812

P < 0.001 P = 0.477 P = 0.627 P = 0.785 P = 0.968

Σw = 1.000 Σw = 0.095 Σw = 0.225 Σw = 0.180 Σw = 0.220

B) Changing density dependence b = 0.366 b = 0.084 b = 0.423 b = 0.111 b = �17.53

P = 0.002 P = 0.501 P < 0.001 P = 0.174 P = 0.664

Σw = 0.535 Σw = 0.100 Σw = 0.945 Σw = 0.250 Σw = 0.145

C) Changing driver sensitivity b = �0.011 b = 0.078 b = �0.283 b = 0.742 b = 29.289

P = 0.908 P = 0.432 P = 0.133 P < 0.001 P = 0.315

Σw = 0.220 Σw = 0.185 Σw = 0.155 Σw = 0.960 Σw = 0.260

D) Unequal dispersal b = 0.064 b = �0.002 b = �0.020 b = 0.005 b = 1.223

P < 0.001 P = 0.764 P = 0.882 P = 0.882 P < 0.001

Σw = 0.970 Σw = 0.165 Σw = 0.105 Σw = 0.225 Σw = 1.000

Combined mechanisms

(see caption, main text)

b = 0.407 b = 0.147 b = 0.203 b = �0.055 b = 1.068

P < 0.001 P < 0.001 P = 0.348 P = 0.297 P < 0.001

Σw = 1.00 Σw = 0.850 Σw = 0.190 Σw = 0.190 Σw = 0.970

The combined scenario involved unequal dispersal and two operating environmental drivers, each affecting the populations equally and having different

spatial structures. Model coefficients are denoted b. P-values, based on 1000 permutations, are for tests comparing the 5-predictor model to the model with

the predictor in the column header removed. Variable importance (Σw) is quantified by summing, over all models containing each variable, model weights

generated using the leave-n-out resampling procedure (see text and Appendix S4 for details).
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underscores that geography of synchrony is a conspicuous fea-
ture of these data. There are not only regions of very low syn-
chrony (the Pacific Northwest and California’s Central
Valley), but also regions of extremely high synchrony (south-
west Texas). Major urban areas commonly have low syn-
chrony, but areas dominated by other land cover types are in
some locations synchronised and in others asynchronous.
Mapping can be used to infer potential drivers of syn-

chrony. If an environmental factor (e.g. temperature or

precipitation) is driving synchrony in a biological variable
through Moran effects, then synchrony maps for the driver
should resemble synchrony maps for the biological variable.
Similarity of maps can be tested formally using spatial statis-
tics (Defriez & Reuman in press a,b). This approach is similar
in concept to attempts by earlier studies to attribute causes of
synchrony based on similarity in patterns of distance decay
between population and environmental synchrony (Koenig
2002; Koenig & Liebhold 2016), an approach that met with
limited success (Liebhold et al. 2004; Abbott 2007). The new
approach is more effective because it uses detailed geographi-
cal information for inference. For instance, Defriez & Reu-
man (in press a,b) inferred drivers of synchrony in terrestrial
and oceanic primary production. This approach requires data
that are highly spatially resolved relative to their geographical
extent. Such data sets are increasingly available through
remote sensing. There are also manually collected but spatially
extensive data sets for plankton (Batten et al. 2003; California
Cooperative Oceanic Fisheries Investigations 2016), birds
(Koenig 2001; Koenig & Liebhold 2016), insect pests (Potter
& Paschke 2014) and other taxa.

APPLICATION: MEASURING CHANGES IN

SYNCHRONY

Recent work demonstrating changes in synchrony (Allstadt
et al. 2015; Sheppard et al. 2015; Defriez et al. 2016; Koenig
& Liebhold 2016) suggests that its geography may also
change. Changes in geographies of synchrony can be evalu-
ated, for instance, using time-windowed versions of the analy-
sis of the previous section. We mapped synchrony of annual
maximum NDVI for 2006–2015 (Fig. 2b) and differenced our
time-windowed maps to show changes (Figs 2c).
Synchrony declined on average between 1989–1998 and

2006–2015 (mean difference = �0.029) but changes were
highly variable (standard deviation of differences = 0.235).
Regional patterns of change are also apparent: synchrony
declined markedly in the Pacific Northwest and much of the
eastern seaboard, but commonly increased in central USA
(Fig. 2c). Much of the Colorado Rockies saw an increase in
synchrony. To our knowledge, this is the first analysis to
reveal temporal changes in geography of synchrony. Koenig
& Liebhold (2016) examined changes in synchrony of weather
and bird populations using traditional distance-based analy-
ses. They emphasise the potential conservation importance of
the changes they observed. Implications of spatial synchrony
for conservation and other human concerns are potentially
great. More detailed understanding of how, where and why
synchrony changes are needed.

SYNCHRONY NETWORKS AND MODULARITY

We demonstrate a second approach to the geography of syn-
chrony using network graphs. In this approach, network
nodes/vertices represent locations at which time series are
available, and edges/links represent strength or statistical sig-
nificance of synchrony between locations (Bollobas 1998;
Kolaczyk & Csardi 2014). To our knowledge, synchrony net-
works are a new type of ecological network. Food web studies

(a)

(b)

(c)

Figure 2 Geography of synchrony of annual maximum normalisd

difference vegetation index for (a) 1989–1998; (b) 2006–2015; and (c)

change in synchrony between era 1 (1989–1988) and era 2 (2006–2015).
Positive values in c indicate increases in synchrony from the 1989–1998
period to the 2006–2015 period. See text for details.
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(Pimm et al. 1991; Proulx et al. 2005; Allesina et al. 2008),
landscape genetics (Dyer 2015) and other areas of ecology
have greatly benefited from network approaches, and we
believe the study of synchrony can also benefit.
A primary advantage of a network approach is that it opens

the study of spatial synchrony to network mathematics. We
identified some metrics and other network characteristics com-
monly used in the network literature that have meaning for
synchrony networks (Table 2). Myriad other approaches to
analysing graph structure exist, and it is likely that many can
be applied to synchrony networks, and others can be devel-
oped. Since our applications of networks to synchrony are ini-
tial demonstrations only, for simplicity we treated synchrony
networks as unweighted graphs. Weighted networks may also
be useful, for instance, in cases with substantial anisotropy.
A potentially common type of geography of synchrony, rep-

resented in our simulations (section ‘Application: Inference of
the Causes of Synchrony’, Fig. 1), is the presence of groups of
locations having high within-group and low between-group
synchrony. These groups correspond to ‘communities’ or
‘modules’ in graph theory. Our simulations indicate that mod-
ules can arise from several mechanisms, and the modular
structure of a network may help infer causes of spatial varia-
tion in synchrony. Modules may be geographically compact,
or dendritic, or comprised of disconnected components,
revealing complex habitat structure or geographically complex
effects of synchronising influences. Module detection methods
can detect modules of any geographical shape. There are at
least three major types of module detection method: (1) tech-
niques descended from the original definition of modularity
and the betweenness-based method of Girvan & Newman

(Girvan & Newman 2002; Newman 2006; Fletcher et al.
2013); (2) methods based on random walks (Rosvall & Berg-
strom 2008); and (3) ‘spectral clustering’ methods reviewed by
Von Luxburg (2007). It is yet unclear which will be most suit-
able for the study of synchrony networks.

APPLICATION: THE ECOLOGY OF THE GYPSY MOTH

To demonstrate a network approach to synchrony, we con-
structed synchrony networks from data on gypsy moth out-
breaks in the northeastern United States from 1975 to 2014.
Data consist of annual time series of area defoliated by gypsy
moth in sixty-three 64 9 64 km2 grid cells covering the region
infested by the gypsy moth circa 1975. Defoliation maps were
constructed from aerial surveys (Peltonen et al. 2002). Syn-
chrony between location pairs was measured using the power-
normalised real part of the cross-wavelet transform (Grinsted
et al. 2004). This quantity is a sensible synchrony metric
because it takes larger values when the magnitudes of oscilla-
tions are correlated through time and oscillations are in phase.
The timescale specificity of wavelet statistics is also an advan-
tage. We explored whether the geography of synchrony is
timescale dependent by computing synchrony separately over
fluctuation periods of 2–4 years (‘short’ timescales) and 4–
12 years (‘long’ timescales). We linked pairs of nodes having
statistically significant synchrony, and used colour to indicate
the degree of synchrony (Fig. 3). Data processing, wavelet
analyses and significance testing are detailed in Appendix S6.
Comparing the short- and long-timescale networks of gypsy

moth synchrony (Fig. 3) shows that the strength of synchrony
and its geography are both timescale dependent. The long-

Table 2 A selection of established characteristics and quantitative metrics associated with network graphs, and their relevance to the geography of syn-

chrony

Meaning and reference to formal definition Relevance to synchrony

Graph characteristic

Modularity The presence of groups of vertices (modules) having high within-group

connectedness and low between-group connectedness (Newman 2006; Mart�ın

Gonz�alez et al. 2012; Fletcher et al. 2013; Krzakala et al. 2013; Peterman

et al. 2016)

Modules indicate synchronous collections of

locations. Some algorithms (Newman 2006;

Krzakala et al. 2013) also indicate the strength

of membership of each node in its module

Global (graph-wide) metrics

Degree distribution The frequency distribution of vertex degree (Kelly et al. 2012; Kolaczyk &

Csardi 2014). Vertex degree is the number of edges incident on each vertex

(Brandes & Erlebach 2005; Kolaczyk & Csardi 2014)

Different degree distributions imply different

geographies of synchrony. For example, a

Poisson distribution suggests that synchrony

lacks spatial structure (Brandes & Erlebach

2005; Kolaczyk & Csardi 2014); a power-law

suggests synchrony propagates from a few

‘hubs’ (Brandes & Erlebach 2005; Kolaczyk

& Csardi 2014)

Global transitivity The probability that adjacent vertices of a vertex are themselves connected,

considering all vertices (Wasserman & Faust 1994; Opsahl & Panzarosa 2009)

Transitivity indicates the tendency to cluster

into synchronous groups (Kolaczyk & Csardi

2014)

Local (single-vertex) metric

Centrality Centrality metrics quantify the importance of vertices to the network (Brandes

& Erlebach 2005). Vertex degree is one such metric; another, betweenness,

quantifies the frequency with which a vertex lies along shortest paths between

other vertices (Newman 2010)

High centrality implies a ‘hub’ of synchrony

For simplicity, definitions in the table apply to unweighted graphs, but metrics are easily extended to weighted graphs.
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timescale network (Fig. 3b) is more densely connected, with
links concentrated among inland locations. The short-time-
scale graph (Fig. 3a) has fewer and more uniformly dis-
tributed links. At long timescales, 314 location pairs were
significantly synchronous (a = 0.01), but only 104 pairs were
significantly synchronous at short timescales, and less than
30% of these were also significantly synchronous at long time-
scales. Because of the greater synchrony at long timescales
and because the dominant oscillation periods for gypsy moths
are known to range between about 4 and 10 years (Johnson
et al. 2006; Haynes et al. 2009b), we focus on the long time-
scale network.
We applied three graph theoretic techniques to the long-

timescale synchrony network: vertex degree distribution, tran-
sitivity and a measure of centrality. Vertex degree measures
the number of edges incident on each vertex. Comparing the
statistical distribution of vertex degree across vertices with dis-
tributions arising from random or null-model graphs yields
insight into graph structure (Kelly et al. 2012; Kolaczyk &
Csardi 2014). Transitivity, also called the clustering coeffi-
cient, is the probability that the vertices adjacent (connected)
to each vertex are themselves connected, and can be applied
to single nodes or the graph as a whole. We consider the
whole-graph metric. Centrality is a class of metrics quantify-
ing the importance of a vertex or link to the network (Bran-
des & Erlebach 2005). We used vertex degree itself as a
centrality metric because a location that is synchronous with
many other locations (high vertex degree) is of intrinsic inter-
est and can be considered ‘central’ in our context.
To develop statistical tests for geography of synchrony for

network graph characteristics, we compared the long-timescale
empirical synchrony network to a distribution of random
graphs generated under a null hypothesis of isotropic distance
decay of synchrony. We use this null hypothesis because of
our interest in deviations from this well-studied pattern
(Bjørnstad & Falck 2001). We simulated 1000 realisations of a
process that preserved the number and location of vertices
and generated edges randomly with distance-dependent

probabilities. The dependence of edge probability on distance
was conditioned empirically through logistic regression
(Appendix S7). Other null hypotheses may be appropriate for
other research goals, e.g. Erdos–Renyi random graphs for
which m edges are distributed among n vertices entirely ran-
domly (Erdos & Renyi 1959), thus providing a null hypothesis
of no spatial structure at all, even excluding distance decay.
The degree distribution for the long-timescale gypsy moth

synchrony network had notable differences from degree distri-
butions of networks generated from the null model. The
empirical network had larger numbers of sparsely and highly
connected nodes than the null model (Fig. 4a). Transitivity (s)
was greater for the empirical synchrony network (s = 0.731)
than for all 1000 randomised graphs, indicating that the net-
work contains components that are more densely connected
than expected based on distance alone. These summary results
show that gypsy moth synchrony has a meaningful geography.
To display details of the geography, we identified nodes with
vertex degrees significantly higher than the distributions of
their degrees under the null model. These ‘hubs’ are especially
important locations for synchrony (Fig. 4b).
One hypothesis consistent with the above findings is that

the long-timescale gypsy moth synchrony network consists of
network ‘modules’ (sets of locations) having relatively strong
within-set synchrony but weak between-set synchrony. We
examined evidence for such structure using wavelet clustering
(Rouyer et al. 2008), a technique that uses information at all
timescales. Strength of cluster membership for each location
was calculated as in Fletcher et al. (2013). The gypsy moth
synchrony network contained two distinct clusters, with Clus-
ter 1 largely near the coast and Cluster 2 largely inland
(Fig. 5a).
Post-hoc analyses generally should be performed to interpret

the ecological meaning of clusters and to determine whether
mathematical differences between them are ecologically impor-
tant. We used for this purpose mean time series and wavelet
mean fields (Sheppard et al. 2015). The wavelet mean field is
an average of normalised wavelet transforms. If at a given

(a)
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0.9

Synchrony
2–4 year periods

(b)

0.5

0.6

0.7

0.8

0.9

Synchrony
4–12 year periods

Figure 3 Timescale-specific synchrony networks for gypsy moth defoliation. Only statistically significant (a = 0.01, see Appendix S6 for methods) edges are

shown. Colour indicates values of the power-normalised real part of the cross-wavelet transform, averaged over respective timescales, but only the

topological (unweighted) network structure (ignoring colour) was used in subsequent analyses, for simplicity. Colours were for visual comparisons only.
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time and timescale, oscillations have similar phase, and are
thus synchronised, the magnitude of the wavelet mean field is
large, whereas if the phases are unrelated the magnitude is
small. Thus, the wavelet mean field for a cluster provides a
time- and timescale-specific depiction of synchrony.
Differences between clusters were evident in (5th root trans-

formed to improve normality; Allstadt et al. 2013) mean time
series (Fig. 5c,e) and wavelet mean fields (Fig. 5d,f) for each
cluster. As has previously been observed, outbreaks occurred
on 4–5 and 8–10 year cycles (Bjørnstad et al. 2010; Haynes
et al. 2012; Allstadt et al. 2013). Clusters differ in the relative
strength of 4–5 year vs. 8–10 year oscillations, and in the
severity of outbreak decline in the second half of the study
period. Cluster-average time series (Fig. 5c,e) depict the syn-
chronous component of oscillations in each of the two clus-
ters, since non-synchronous, local oscillations tend to cancel
out in average time series. Cluster 1 exhibits synchronous 4–
5 year oscillations and the strongest recent outbreaks, which
shifted to longer timescales beginning in the 1990s. Cluster 2
shows stronger synchrony at 8–10 year timescales and a
decline in recent outbreak amplitude.
We next used matrix regression with our new model selec-

tion procedures (section ‘Application: Inference of the
Causes of Synchrony’, Appendix S4) to assess how two
mechanisms underlying geography of synchrony, spatial
structure in the synchrony of environmental drivers (mecha-
nism A) and differences in density dependence (mechanism
B) affect gypsy moth defoliation synchrony. Our analyses
build on an earlier analysis of geographical variation in

gypsy moth synchrony (Haynes et al. 2013). As in Haynes et al.
(2013), we use matrices of weather synchrony, forest composi-
tion similarity and spatial proximity to predict patterns in a
matrix of gypsy moth synchrony. We also use similarity in den-
sity dependence, calculated from estimated AR(2) coefficients
(as in section ‘Application: Inference of the Causes of Syn-
chrony’ for the simulations, and described in Appendix S3).
Weather was represented by the first two principal components
(PC1 and PC2) resulting from 36 weather variables (monthly
average minimum temperature, monthly average maximum
temperature, and monthly total precipitation) at each location
from 1975 to 2014. As for the gypsy moth, synchrony was mea-
sured as the normalised real part of the cross-wavelet trans-
form, averaged over 4–12 year timescales. Because a recent
report raised concerns that interpolated climate products (in-
cluding PRISM data used by Haynes et al. 2013) may be inac-
curate for precipitation (Behnke et al. 2016), we used weather
station data obtained from the US Historical Climate Network
(Easterling et al. 1996). Similarity in forest type was determined
by computing the proportion of each grid cell comprised of 7
forest types using maps produced by Ruefenacht et al. (2008)
and taking the Mahalanobis distance between grid cell pairs
(Haynes et al. 2013). Distances were converted to similarities
using 1�(x/max(x)). Appendix S8 provides details of the data
preparation and model selection procedures.
The best predictor of gypsy moth synchrony was synchrony

in PC2 (Table 3), which primarily reflected variation in pre-
cipitation (Haynes et al. 2013). Similarity in forest type may
also play a secondary role in generation of spatial patterns of
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Figure 4 (a) The empirical degree distribution (solid line) of the long-timescale gypsy moth synchrony network (shown in Fig. 3b), compared to the degree

distributions of 1000 randomised networks under a null hypothesis of isotropic distance decay in synchrony (edge probability). (b) The degree of each
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synchrony: the top model by cross-validation weights con-
tained synchrony in PC2 and forest type similarity. Previ-
ously, forest type has been linked to geographical patterns in
density dependence (Liebhold et al. 2006) and outbreak peri-
odicity (Haynes et al. 2009b); these effects are hypothesised to
result from influences of natural enemies (Haynes et al. 2009a,
2013). Although statistically significant, the top model had
only R2 = 0.153, suggesting that unidentified factors play large
roles in the geography of gypsy moth synchrony. We exam-
ined module structure in the PC2 synchrony network, but this
did not obviously correspond to patterns of gypsy moth syn-
chrony (Appendix S9).

DISCUSSION

Despite long-standing interest in synchrony, few studies have
recognised the geography of synchrony and investigated its
causes and consequences, and few studies have leveraged the
geography of synchrony to understand ecological processes.
We have here synthesised several pioneering papers and
extended prior work by: (1) showing conceptually and theoret-
ically how four mechanisms can generate geographies of
synchrony; (2) documenting complex and pronounced geogra-
phies of synchrony in important study systems, and showing
that these patterns can exhibit ‘hubs’ and ‘modules’, can be
timescale specific, and can change through time; and (3)
demonstrating several methods capable of revealing the geog-
raphy of synchrony and using it to understand the causes and
nature of synchrony, and organism ecology. The potential for
geographies of synchrony to improve the attribution of drivers
of synchrony is a promising avenue of research; identification
of drivers of synchrony has been a long-standing challenge in
population ecology (Ranta et al. 1995; Liebhold et al. 2004).
Further, we introduced a new type of network, the synchrony
network, which we believe may be very useful in future studies
of spatiotemporal dynamics.
We examined mechanisms of the geography of synchrony

that seem likely to be widespread and for which there is
empirical support, but there may be other mechanisms. Our
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Figure 5 Module structure in the gypsy moth network. Panel (a) cluster identity (colour) and membership strength (shading); (b) wavelet clustering

dendrogram; (c, e) mean defoliation time series for each cluster; (d, f) wavelet mean field magnitudes for each cluster.

Table 3 Matrix regression coefficients (b), P-values and variable impor-

tance weights (Σw) of predictors of gypsy moth synchrony at long

(4–12 years) timescales. Bold font indicates statistically significant effects.

Predictor b P Σw

Density dependence similarity 0.156 0.260 0.410

Forest type similarity �0.222 0.198 0.545

Synchrony in PC1 scores �0.114 0.787 0.245

Synchrony in PC2 scores 0.699 0.003 0.775

Proximity 0.181 0.260 0.455

Coefficients and P-values come from the full model including all predic-

tors. Importance weights were generated using model selection methods

(Appendices S4 and S8).
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gypsy moth analyses provided evidence that spatial patterns
in the synchrony of environmental drivers (mechanism A) can
underlie geographies of synchrony (Table 3). Previous studies
of the gypsy moth indicate that differences in density depen-
dence (mechanism B) may be important as well (Liebhold
et al. 2006). Defriez & Reuman (in press a) found between-
continent heterogeneity in Moran effects resulting from tem-
perature and precipitation, supporting our hypothesis that
geography of synchrony can arise because dynamics in differ-
ent locations are affected by different drivers (mechanism C).
Bellamy et al. (2003) and T L Anderson et al. (unpublished
data) found effects of landscape structure on synchrony of
bird and plankton populations, respectively, consistent with
unequal rates of dispersal between populations (mechanism
D). One additional possible mechanism, yet to be empirically
demonstrated, is that population fluctuations may be synchro-
nised by multiple drivers of synchrony, which may interact,
and the nature of the interactions themselves might change
spatially.
Our work focused on settings for which dynamics are ade-

quately approximated by linear models. Although Moran
effects and dispersal can produce synchrony in non-linear
models (Abbott 2007; Haynes et al. 2009a; Vasseur & Fox
2009), strongly non-linear dynamics may complicate detection
and attribution of mechanisms of synchrony and its geogra-
phy through the emergence of self-organised spatiotemporal
patterns (Hassell et al. 1991; Sole et al. 1992; Bjørnstad 2000;
Bjørnstad & Bascompte 2001). Although linear approaches
have a long and successful history in ecology and represent a
firm starting place (Royama 1992), future theoretical study
should address the robustness of our approaches to deviations
from linear population dynamics.
For the gypsy moth, we showed that synchrony and its

geography can be timescale specific, and we demonstrated
the existence of both ‘hubs’ and ‘modules’ of synchrony.
Future analysis will reveal the extent to which such features
are common of a wide range of organisms. Prior to our
study, timescale specificity of spatial synchrony had been
demonstrated in epidemiological systems (Grenfell et al.
2001; Viboud et al. 2006), lab systems (Vasseur & Fox
2009), insects (Bjørnstad et al. 2008; Sheppard et al. 2015)
and marine plankton (Defriez et al. 2016), although these
studies did not explore geographies of synchrony in the
explicit way advocated here. We showed that frequency
specificity and geography of synchrony can be interacting
features. Hubs of synchrony could, in principle, correspond
to areas of high population density, or reveal areas acting as
major sources of migrants. Synchrony hubs may thus have
importance for invasion ecology. Hubs may reveal epicentres
or start points of outbreaks (Grenfell et al. 2001) and thus
may be important for pest and disease control. Network
module boundaries may correspond with substantial spatial
changes in dynamics, and the location of these boundaries
may yield important insights into processes regulating popu-
lations. For instance, for gypsy moth, modules may relate to
transitions from oak-hickory and oak-pine forest types to
maple-beech-birch types (Johnson et al. 2006; Liebhold et al.
2006; Haynes et al. 2013). Hubs and modules can be
revealed only with a detailed spatial approach.

Secular changes have recently been observed in aspects of
synchrony, including in its distance decay, timescale structure
and overall strength (Post & Forchhammer 2004; Allstadt
et al. 2015; Sheppard et al. 2015; Defriez et al. 2016; Koenig
& Liebhold 2016; Shestakova et al. 2016). Adding to these
results, we showed large temporal changes in the geography
of synchrony for terrestrial primary production in the United
States. Our findings may have implications for regional food
and forest production, carbon cycling, global change biology
and other applications. It is the synchronous components of
local fluctuations that disproportionately affect regional aver-
ages of any quantity: non-synchronous components tend to
cancel in the regional total, but synchronous fluctuations com-
bine to have large effects. Therefore, changes in synchrony
can lead to changes in time series of regional productivity,
even when statistical properties of local time series considered
in isolation remain unchanged. In the case of a crop, such
changes may lead to changes in the variability in regional pro-
duction. Regional carbon uptake from the atmosphere is also
related to the total net production of locations in the region,
which is affected by synchrony of local primary production
time series. These implications of changes in synchrony and
its geography focus on the terrestrial productivity example,
but changes in synchrony are also important for conservation
(Koenig & Liebhold 2016) and pest management (Bjørnstad
et al. 2008; Sheppard et al. 2015). Changes in the geography
of synchrony may affect spatial aspects of these applications.
Some observed changes in synchrony seem likely related to
(Post & Forchhammer 2004; Koenig & Liebhold 2016) or
have already been convincingly attributed to climatic change
(Sheppard et al. 2015; Shestakova et al. 2016). Whether geo-
graphical changes in synchrony are linked to global change is
unknown but important.
Several factors influence whether mapping synchrony

(Fig. 2) or synchrony networks (Figs 3–5) is the better
approach in application to other systems. Both correlations
and spectral tools can be used with either approach. The two
approaches investigate slightly different questions: synchrony
maps ask how the amount of local or regional synchrony var-
ies geographically, while synchrony networks focus on which
location pairs are synchronised. Synchrony maps seem most
applicable when observation locations are numerous and spa-
tially uniform. The rise of remote sensing makes such data
increasingly available. Neighbourhood averaging obscures
information about pairwise relationships, but this could be a
strength rather than a weakness for large datasets. Synchrony
network approaches, probably better suited to data sets with
fewer locations, retain a complete set of information about
synchrony. Numerous well-developed tools from network
mathematics (Bollobas 1998; Brandes & Erlebach 2005)
strengthen characterisations of synchrony network structure.
Mapping synchrony and synchrony networks both have
potential to yield new insights into spatial synchrony.
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